Reconstructing gene regulatory networks with bayesian networks by combining expression data with multiple sources of prior knowledge.

نویسندگان

  • Adriano V Werhli
  • Dirk Husmeier
چکیده

There have been various attempts to reconstruct gene regulatory networks from microarray expression data in the past. However, owing to the limited amount of independent experimental conditions and noise inherent in the measurements, the results have been rather modest so far. For this reason it seems advisable to include biological prior knowledge, related, for instance, to transcription factor binding locations in promoter regions or partially known signalling pathways from the literature. In the present paper, we consider a Bayesian approach to systematically integrate expression data with multiple sources of prior knowledge. Each source is encoded via a separate energy function, from which a prior distribution over network structures in the form of a Gibbs distribution is constructed. The hyperparameters associated with the different sources of prior knowledge, which measure the influence of the respective prior relative to the data, are sampled from the posterior distribution with MCMC. We have evaluated the proposed scheme on the yeast cell cycle and the Raf signalling pathway. Our findings quantify to what extent the inclusion of independent prior knowledge improves the network reconstruction accuracy, and the values of the hyperparameters inferred with the proposed scheme were found to be close to optimal with respect to minimizing the reconstruction error.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Integrate qualitative biological knowledge for gene regulatory network reconstruction with dynamic Bayesian networks

Reconstructing gene regulatory networks, especially the dynamic gene networks that reveal the temporal program of gene expression from microarray expression data, is essential in systems biology. To overcome the challenges posed by the noisy and under-sampled microarray data, developing data fusion methods to integrate legacy biological knowledge for gene network reconstruction is a promising d...

متن کامل

H∞ Sampled-Data Controller Design for Stochastic Genetic Regulatory Networks

Artificially regulating gene expression is an important step in developing new treatment for system-level disease such as cancer. In this paper, we propose a method to regulate gene expression based on sampled-data measurements of gene products concentrations. Inherent noisy behaviour of Gene regulatory networks are modeled with stochastic nonlinear differential equation. To synthesize feed...

متن کامل

Reconstruct modular phenotype-specific gene networks by knowledge-driven matrix factorization

MOTIVATION Reconstructing gene networks from microarray data has provided mechanistic information on cellular processes. A popular structure learning method, Bayesian network inference, has been used to determine network topology despite its shortcomings, i.e. the high-computational cost when analyzing a large number of genes and the inefficiency in exploiting prior knowledge, such as the co-re...

متن کامل

BGRMI: A method for inferring gene regulatory networks from time-course gene expression data and its application in breast cancer research

Reconstructing gene regulatory networks (GRNs) from gene expression data is a challenging problem. Existing GRN reconstruction algorithms can be broadly divided into model-free and model-based methods. Typically, model-free methods have high accuracy but are computation intensive whereas model-based methods are fast but less accurate. We propose Bayesian Gene Regulation Model Inference (BGRMI),...

متن کامل

Inferring Gene Regulatory Networks from Multiple Data Sources Via a Dynamic Bayesian Network with Structural EM

Using our dynamic Bayesian network with structural Expectation Maximization (SEM-DBN), we develop a new framework to model gene regulatory network from both gene expression data and transcriptional factor binding site data. Only based on mRNA expression data, it is not enough to accurately estimate a gene network. It is difficult for us to estimate a gene network accurately only with the mRNA e...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Statistical applications in genetics and molecular biology

دوره 6  شماره 

صفحات  -

تاریخ انتشار 2007